18.100A PSET 3 SOLUTIONS

DAVID CORWIN

Problem 1

(a). If $\sum a_{n}$ is absolutely convergent, then it is convergent, so $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus, there is N such that for $n>N$, we have $\left|a_{n}\right|<1$. It follows that for such n, we have $\left|a_{n}^{2}\right|=\left|a_{n}\right|^{2} \leq\left|a_{n}\right|$.

By tail convergence, we know that $\sum_{n>N}\left|a_{n}\right|$ converges, so by the comparison theorem for positive series, we find that $\sum_{n>N}\left|a_{n}^{2}\right|=\sum_{n>N} a_{n}^{2}$ converges. Again, by tail convergence, this implies that $\sum_{n} a_{n}^{2}$ converges.
(b). We consider $a_{n}=\frac{(-1)^{n}}{\sqrt{n}}$. By Cauchy's test for alternating series, this converges. However, a_{n}^{2} is the harmonic series, which is known to diverge.

Problem 2

For each n, set

$$
\begin{aligned}
& a_{n}^{+}=\frac{\left|a_{n}\right|+a_{n}}{2} \\
& a_{n}^{-}=\frac{\left|a_{n}\right|-a_{n}}{2}
\end{aligned}
$$

Then $a_{n}=a_{n}^{+}-a_{n}^{-}$for all n, and $a_{n}^{+}, a_{n}^{-} \geq 0$.
Suppose that a_{n} has finitely many positive terms. Then $a_{n}^{+}=0$ for all but finitely many n, so the series $\left\{a_{n}^{+}\right\}$converges. It follows that $a_{n}^{-}=a_{n}^{+}-a_{n}$
converges, hence so does $\left|a_{n}\right|=a_{n}^{+}+a_{n}^{-}$, a contradiction to conditional convergence.

Suppose that a_{n} has finitely many negative terms. Then $a_{n}^{-}=0$ for all but finitely many n, so the series $\left\{a_{n}^{-}\right\}$converges. It follows that $a_{n}^{+}=a_{n}-a_{n}^{-}$ converges, hence so does $\left|a_{n}\right|=a_{n}^{+}+a_{n}^{-}$, a contradiction to conditional convergence.

In either case, we see that if a_{n} converges conditionally (i.e., $\left|a_{n}\right|$ does not converge), then a_{n} either has infinitely many positive or infinitely many negative terms.

PROBLEM 3

(b). Setting $a_{n}=\frac{n^{2}}{2^{n}}$, we have

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\left|\frac{(n+1)^{2} / 2^{n+1}}{n^{2} / 2^{n}}\right| \\
& =\frac{1}{2}\left(\frac{n+1}{n}\right)^{2}
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{2}\left(\frac{n+1}{n}\right)^{2}=\frac{1}{2}<1
$$

So by the ratio test, this series converges.
(d). Setting $a_{n}=\frac{(n!)^{2}}{(2 n)!}$, we have

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\left|\frac{(n+1)!^{2} /(2 n+2)!}{(n!)^{2} /(2 n)!}\right| \\
& =\frac{(n+1)!^{2} /(n!)^{2}}{(2 n+2)!/(2 n)!} \\
& =\frac{(n+1)^{2}}{(2 n+2)(2 n+1)} \\
& =\frac{n^{2}+2 n+1}{4 n^{2}+6 n+2} \\
& =\frac{1+2 / n+1 / n^{2}}{4+6 / n+2 / n^{2}}
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{1+2 / n+1 / n^{2}}{4+6 / n+2 / n^{2}}=\frac{1}{4}<1
$$

So by the ratio test, this series converges.
(j). By the integral test, we may compare this with $\int_{2}^{\infty} \frac{d x}{x(\ln x)^{p}}$.

For $=p \neq 1$, the corresponding indefinite integral is $\frac{(\ln x)^{1-p}}{1-p}$. We thus have

$$
\int_{2}^{\infty} \frac{d x}{x(\ln x)^{p}}=\left[\frac{(\ln x)^{1-p}}{1-p}\right]_{2}^{\infty}
$$

As $\lim _{x \rightarrow \infty} \ln x=\infty$, this converges only when $p>1$.

Finally, if $p=1$, the corresponding indefinite integral is $\ln \ln x$. We thus have

$$
\int_{2}^{\infty} \frac{d x}{x \ln x}=[\ln \ln x]_{2}^{\infty}
$$

As $\lim _{x \rightarrow \infty} \ln x=\infty$, we also have $\lim _{x \rightarrow \infty} \ln \ln x=\infty$, so the integral diverges.
In summary, we have convergence only when $p>1$.

Problem 4

Let's suppose that the limit $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists. Then if we apply the ratio test to $\sum a_{n} x^{n}$, we are considering the limit

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x^{n+1}}{a_{n} x^{n}}\right|=|x| \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

This is less than one iff

$$
|x|<\left(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|\right)^{-1}
$$

So

$$
R=\left(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|\right)^{-1}=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

(a). Setting $a_{n}=\frac{1}{2^{n} \sqrt{n}}$, we have

$$
\begin{aligned}
\left|\frac{a_{n}}{a_{n+1}}\right| & =\left|\frac{1 /\left(2^{n} \sqrt{n}\right)}{1 /\left(2^{n+1} \sqrt{n+1}\right)}\right| \\
& =\left|\frac{2^{n+1} \sqrt{n+1}}{2^{n} \sqrt{n}}\right| \\
& =2 \sqrt{1+\frac{1}{n}}
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty} 2 \sqrt{1+\frac{1}{n}}=2 .
$$

Therefore, the ratio of convergence is 2 .
(f). The nth root of the nth term is $\frac{x}{\ln n}$. For all x, we have $\lim _{n \rightarrow \infty} \frac{x}{\ln n}=0$, so by the nth root test, we see that the nth root of the nth term approaches 0 . It follows that the series converges for all x, i.e., the radius of convergence is ∞.

Problem 5

Let $f(x)=\frac{x}{1+x}$. We have $f(1)=\frac{1}{2}$, so we need to show that $\lim _{x \rightarrow 1} f(x)=$ $\frac{1}{2}$.

Given $\epsilon>0$, let $\delta=\min (1, \epsilon)$.
Then if $|x-1|<\delta$, we have

$$
\begin{aligned}
\left|f(x)-\frac{1}{2}\right| & =\left|\frac{x}{1+x}-\frac{1}{2}\right| \\
& =\left|\frac{2 x}{2+2 x}-\frac{1+x}{2+2 x}\right| \\
& =\left|\frac{x-1}{2+2 x}\right| \\
& =\frac{|x-1|}{|2+2 x|}
\end{aligned}
$$

As $|x-1|<\delta \leq 1$, we have $x>0$, so $|2+2 x|>2$, so

$$
\left|f(x)-\frac{1}{2}\right|=\frac{|x-1|}{|2+2 x|} \leq|x-1|<\delta \leq \epsilon
$$

As $\epsilon>0$ was arbitrary, we are done.

PROBLEM 6

We have $\sin ^{2} x=1-\cos ^{2} x=(1-\cos x)(1+\cos x)$, so

$$
1-\cos x=\frac{\sin ^{2} x}{1+\cos x}
$$

unless $\cos x=-1$. But $\cos 0=1$, so $\cos x \neq-1$ for x in a neighborhood of 0 .

We therefore have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos x}{x} & =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x(1+\cos x)} \\
& =\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)\left(\lim _{x \rightarrow 0} \frac{\sin x}{1+\cos x}\right) \\
& =(1)\left(\frac{0}{1+1}\right) \\
& =0
\end{aligned}
$$

PROBLEM 7

As the function contains \sqrt{x}, we are only considering $x \geq 0$. This will be assumed implicitly in all that follows.

For all $x \neq 0$, we have $|\cos (1 / x)| \leq 1$. It follows that for $x \neq 0$, we have $|f(x)|=\sqrt{x}|\cos 1 / x| \leq \sqrt{x}$. Thus $0 \leq|f(x)| \leq \sqrt{x}$, so by the squeeze theorem for limits, $0 \leq \lim _{x \rightarrow 0}|f(x)| \leq \lim _{x \rightarrow 0} \sqrt{x}=0$. It follows that $\lim _{x \rightarrow 0}|f(x)|=$ 0 , hence also $\lim _{x \rightarrow 0} f(x)=0=f(0)$, so f is continuous at 0 .

Problem 8

(a). Suppose there were x_{0} such that $f\left(x_{0}\right) \neq 0$. Let $\epsilon=\left|f\left(x_{0}\right)\right| / 2>0$. Then there is $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ for $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$.

In particular, for such x, we have $f(x)>\left|f\left(x_{0}\right)\right| / 2>0$. But we can find a rational number r in $\left(x_{0}-\delta, x_{0}+\delta\right)$, so $f(r)=0$, a contradiction.
(b). Again, suppose there were x_{0} such that $f\left(x_{0}\right)>g\left(x_{0}\right)$. Let $\epsilon=\mid f\left(x_{0}\right)-$ $g\left(x_{0}\right) \mid / 2>0$. Then there is $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ and $\mid g(x)-$ $g\left(x_{0}\right) \mid<\epsilon$ for $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. In particular, for such x, we have $f(x)>f\left(x_{0}\right)-\epsilon=\frac{f\left(x_{0}\right)+g\left(x_{0}\right)}{2}$, and $g(x)<g(x)+\epsilon=\frac{f\left(x_{0}\right)+g\left(x_{0}\right)}{2}$. But we can find a rational number r in $\left(x_{0}-\delta, x_{0}+\delta\right)$, so $f(r) \leq g(r)$, a contradiction.

As a counterexample, take $f(x)=0$ and $g(x)=(x-\sqrt{2})^{2}$. Then $f(x)<$ $g(x)$ for all rational x, but $f(\sqrt{2})=g(\sqrt{2})=0$.

Problem 9

Let us take $x_{n}=\frac{n \pi}{2}$. Assume that $\lim _{x \rightarrow \infty} \sin x$ exists.
Applying Theorem 11.5A for $a=\infty$ (if one were worried about the theorem applying with $a=\infty$, one could also apply it to $\sin (1 / x)$ with $a=0$), we find that since $\lim _{n \rightarrow \infty} x_{n}=\infty$, the limit $\lim _{n \rightarrow \infty} \sin x_{n}$ also exists. Call this limit L.

Taking the subsequence $x_{2 n}$, we have

$$
\lim _{n \rightarrow \infty} \sin x_{2 n}=\lim _{n \rightarrow \infty} \sin (2 \pi n)=\lim _{n \rightarrow \infty} 0=0,
$$

so $L=0$. Taking the subsequence $x_{4 n+1}$, we have

$$
\lim _{n \rightarrow \infty} \sin x_{4 n+1}=\lim _{n \rightarrow \infty} \sin \left(2 \pi n+\frac{\pi}{2}\right)=\lim _{n \rightarrow \infty} 1=1
$$

so $L=1$.
This is a contradiction, so $\lim _{x \rightarrow \infty} \sin x$ does not exist.

Problem 10

If f is multiplicatively periodic with constant c, we note that $f(x)=$ $f\left(c c^{-1} x\right)=f\left(c^{-1} x\right)$, so f is multiplicatively periodic with constant c^{-1}. If $c>1$, then $c^{-1}<1$, so we may assume that f is multiplicatively periodic for a constant less than one. In other words, without lack of generality, we may assume $c<1$.

Applying the relation $f(x)=f(c x)$ iteratively, we find that $f(x)=f\left(c^{n} x\right)$ for any x.

Consider the sequence $\left\{c^{n} x\right\}$. This sequence has limit 0 as $n \rightarrow \infty$. Thus $\lim _{n \rightarrow \infty} f\left(c^{n} x\right)=f(0)$ by continuity of f. But $f\left(c^{n} x\right)=f(x)$, so this limit is also $\lim _{n \rightarrow \infty} f\left(c^{n} x\right)=\lim _{n \rightarrow \infty} f(x)=f(x)$. Thus $f(x)=f(0)$ for all x, so the function is constant.

