18.100A PSET 3 SOLUTIONS

DAVID CORWIN

Problem 1

(a). If $\sum a_n$ is absolutely convergent, then it is convergent, so $a_n \to 0$ as $n \to \infty$. Thus, there is N such that for n > N, we have $|a_n| < 1$. It follows that for such n, we have $|a_n^2| = |a_n|^2 \le |a_n|$.

By tail convergence, we know that $\sum_{n>N} |a_n|$ converges, so by the comparison theorem for positive series, we find that $\sum_{n>N} |a_n^2| = \sum_{n>N} a_n^2$ converges. Again, by tail convergence, this implies that $\sum_n a_n^2$ converges.

(b). We consider $a_n = \frac{(-1)^n}{\sqrt{n}}$. By Cauchy's test for alternating series, this converges. However, a_n^2 is the harmonic series, which is known to diverge.

Problem 2

For each n, set

$$a_n^+ = rac{|a_n| + a_n}{2}$$

 $a_n^- = rac{|a_n| - a_n}{2}$

Then $a_n = a_n^+ - a_n^-$ for all n, and $a_n^+, a_n^- \ge 0$.

Suppose that a_n has finitely many positive terms. Then $a_n^+ = 0$ for all but finitely many n, so the series $\{a_n^+\}$ converges. It follows that $a_n^- = a_n^+ - a_n$

DAVID CORWIN

converges, hence so does $|a_n| = a_n^+ + a_n^-$, a contradiction to conditional convergence.

Suppose that a_n has finitely many negative terms. Then $a_n^- = 0$ for all but finitely many n, so the series $\{a_n^-\}$ converges. It follows that $a_n^+ = a_n - a_n^-$ converges, hence so does $|a_n| = a_n^+ + a_n^-$, a contradiction to conditional convergence.

In either case, we see that if a_n converges conditionally (i.e., $|a_n|$ does not converge), then a_n either has infinitely many positive or infinitely many negative terms.

Problem 3

(b). Setting
$$a_n = \frac{n^2}{2^n}$$
, we have

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)^2 / 2^{n+1}}{n^2 / 2^n} \right|$$
$$= \frac{1}{2} \left(\frac{n+1}{n} \right)^2$$

Thus

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1}{2} \left(\frac{n+1}{n} \right)^2 = \frac{1}{2} < 1.$$

So by the ratio test, this series converges.

(d). Setting
$$a_n = \frac{(n!)^2}{(2n)!}$$
, we have

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)!^2/(2n+2)!}{(n!)^2/(2n)!} \right|$$

$$= \frac{(n+1)!^2/(n!)^2}{(2n+2)!/(2n)!}$$

$$= \frac{(n+1)^2}{(2n+2)(2n+1)}$$

$$= \frac{n^2 + 2n + 1}{4n^2 + 6n + 2}$$

$$= \frac{1+2/n+1/n^2}{4+6/n+2/n^2}$$

 $\mathbf{2}$

Thus

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1 + 2/n + 1/n^2}{4 + 6/n + 2/n^2} = \frac{1}{4} < 1.$$

So by the ratio test, this series converges.

(j). By the integral test, we may compare this with $\int_2^\infty \frac{dx}{x(\ln x)^p}$.

For $p \neq 1$, the corresponding indefinite integral is $\frac{(\ln x)^{1-p}}{1-p}$. We thus have

$$\int_{2}^{\infty} \frac{dx}{x(\ln x)^{p}} = \left[\frac{(\ln x)^{1-p}}{1-p}\right]_{2}^{\infty}$$

As $\lim_{x \to \infty} \ln x = \infty$, this converges only when p > 1.

Finally, if p = 1, the corresponding indefinite integral is $\ln \ln x$. We thus have

$$\int_{2}^{\infty} \frac{dx}{x \ln x} = [\ln \ln x]_{2}^{\infty}$$

As $\lim_{x\to\infty} \ln x = \infty$, we also have $\lim_{x\to\infty} \ln \ln x = \infty$, so the integral diverges.

In summary, we have convergence only when p > 1.

Problem 4

Let's suppose that the limit $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists. Then if we apply the ratio test to $\sum a_n x^n$, we are considering the limit

$$\lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| = |x| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

This is less than one iff

$$|x| < \left(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \right)^{-1},$$

 \mathbf{SO}

$$R = \left(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \right)^{-1} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

(a). Setting
$$a_n = \frac{1}{2^n \sqrt{n}}$$
, we have
 $\left| \frac{a_n}{a_{n+1}} \right| = \left| \frac{1/(2^n \sqrt{n})}{1/(2^{n+1} \sqrt{n+1})} \right|$

$$= \left| \frac{2^{n+1} \sqrt{n+1}}{2^n \sqrt{n}} \right|$$

$$= 2\sqrt{1 + \frac{1}{n}}$$

Thus

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} 2\sqrt{1 + \frac{1}{n}} = 2.$$

Therefore, the ratio of convergence is 2.

(f). The *n*th root of the *n*th term is $\frac{x}{\ln n}$. For all x, we have $\lim_{n \to \infty} \frac{x}{\ln n} = 0$, so by the *n*th root test, we see that the *n*th root of the *n*th term approaches 0. It follows that the series converges for all x, i.e., the radius of convergence is ∞ .

Problem 5

Let
$$f(x) = \frac{x}{1+x}$$
. We have $f(1) = \frac{1}{2}$, so we need to show that $\lim_{x \to 1} f(x) = \frac{1}{2}$.

Given $\epsilon > 0$, let $\delta = \min(1, \epsilon)$.

Then if $|x-1| < \delta$, we have

$$f(x) - \frac{1}{2} = \left| \frac{x}{1+x} - \frac{1}{2} \right|$$
$$= \left| \frac{2x}{2+2x} - \frac{1+x}{2+2x} \right|$$
$$= \left| \frac{x-1}{2+2x} \right|$$
$$= \frac{|x-1|}{|2+2x|}$$

4

As $|x-1| < \delta \le 1$, we have x > 0, so |2+2x| > 2, so $\left| f(x) - \frac{1}{2} \right| = \frac{|x-1|}{|2+2x|} \le |x-1| < \delta \le \epsilon.$

As $\epsilon > 0$ was arbitrary, we are done.

Problem 6

We have $\sin^2 x = 1 - \cos^2 x = (1 - \cos x)(1 + \cos x)$, so $1 - \cos x = \frac{\sin^2 x}{1 + \cos x}$,

unless $\cos x = -1$. But $\cos 0 = 1$, so $\cos x \neq -1$ for x in a neighborhood of 0.

We therefore have

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{\sin^2 x}{x(1 + \cos x)}$$
$$= \left(\lim_{x \to 0} \frac{\sin x}{x}\right) \left(\lim_{x \to 0} \frac{\sin x}{1 + \cos x}\right)$$
$$= (1) \left(\frac{0}{1+1}\right)$$
$$= 0.$$

Problem 7

As the function contains \sqrt{x} , we are only considering $x \ge 0$. This will be assumed implicitly in all that follows.

For all $x \neq 0$, we have $|\cos(1/x)| \leq 1$. It follows that for $x \neq 0$, we have $|f(x)| = \sqrt{x}|\cos 1/x| \leq \sqrt{x}$. Thus $0 \leq |f(x)| \leq \sqrt{x}$, so by the squeeze theorem for limits, $0 \leq \lim_{x \to 0} |f(x)| \leq \lim_{x \to 0} \sqrt{x} = 0$. It follows that $\lim_{x \to 0} |f(x)| = 0$, hence also $\lim_{x \to 0} f(x) = 0 = f(0)$, so f is continuous at 0.

PROBLEM 8

(a). Suppose there were x_0 such that $f(x_0) \neq 0$. Let $\epsilon = |f(x_0)|/2 > 0$. Then there is $\delta > 0$ such that $|f(x) - f(x_0)| < \epsilon$ for $x \in (x_0 - \delta, x_0 + \delta)$.

DAVID CORWIN

In particular, for such x, we have $f(x) > |f(x_0)|/2 > 0$. But we can find a rational number r in $(x_0 - \delta, x_0 + \delta)$, so f(r) = 0, a contradiction.

(b). Again, suppose there were x_0 such that $f(x_0) > g(x_0)$. Let $\epsilon = |f(x_0) - g(x_0)|/2 > 0$. Then there is $\delta > 0$ such that $|f(x) - f(x_0)| < \epsilon$ and $|g(x) - g(x_0)| < \epsilon$ for $x \in (x_0 - \delta, x_0 + \delta)$. In particular, for such x, we have $f(x) > f(x_0) - \epsilon = \frac{f(x_0) + g(x_0)}{2}$, and $g(x) < g(x) + \epsilon = \frac{f(x_0) + g(x_0)}{2}$. But we can find a rational number r in $(x_0 - \delta, x_0 + \delta)$, so $f(r) \leq g(r)$, a contradiction.

As a counterexample, take f(x) = 0 and $g(x) = (x - \sqrt{2})^2$. Then f(x) < g(x) for all rational x, but $f(\sqrt{2}) = g(\sqrt{2}) = 0$.

Problem 9

Let us take $x_n = \frac{n\pi}{2}$. Assume that $\lim_{x \to \infty} \sin x$ exists.

Applying Theorem 11.5A for $a = \infty$ (if one were worried about the theorem applying with $a = \infty$, one could also apply it to $\sin(1/x)$ with a = 0), we find that since $\lim_{n \to \infty} x_n = \infty$, the limit $\lim_{n \to \infty} \sin x_n$ also exists. Call this limit L.

Taking the subsequence x_{2n} , we have

$$\lim_{n \to \infty} \sin x_{2n} = \lim_{n \to \infty} \sin \left(2\pi n \right) = \lim_{n \to \infty} 0 = 0,$$

so L = 0. Taking the subsequence x_{4n+1} , we have

$$\lim_{n \to \infty} \sin x_{4n+1} = \lim_{n \to \infty} \sin \left(2\pi n + \frac{\pi}{2} \right) = \lim_{n \to \infty} 1 = 1,$$

so L = 1.

This is a contradiction, so $\lim_{x\to\infty} \sin x$ does not exist.

Problem 10

If f is multiplicatively periodic with constant c, we note that $f(x) = f(cc^{-1}x) = f(c^{-1}x)$, so f is multiplicatively periodic with constant c^{-1} . If c > 1, then $c^{-1} < 1$, so we may assume that f is multiplicatively periodic for a constant less than one. In other words, without lack of generality, we may assume c < 1.

Applying the relation f(x) = f(cx) iteratively, we find that $f(x) = f(c^n x)$ for any x.

Consider the sequence $\{c^n x\}$. This sequence has limit 0 as $n \to \infty$. Thus $\lim_{n \to \infty} f(c^n x) = f(0)$ by continuity of f. But $f(c^n x) = f(x)$, so this limit is also $\lim_{n \to \infty} f(c^n x) = \lim_{n \to \infty} f(x) = f(x)$. Thus f(x) = f(0) for all x, so the function is constant.