
18.100A PSET 3 SOLUTIONS

DAVID CORWIN

Problem 1

(a). If
∑

an is absolutely convergent, then it is convergent, so an → 0 as

n→∞. Thus, there is N such that for n > N , we have |an| < 1. It follows
that for such n, we have |a2n| = |an|2 ≤ |an|.

By tail convergence, we know that
∑
n>N

|an| converges, so by the compar-

ison theorem for positive series, we find that
∑
n>N

|a2n| =
∑
n>N

a2n converges.

Again, by tail convergence, this implies that
∑
n

a2n converges.

(b). We consider an =
(−1)n√

n
. By Cauchy’s test for alternating series, this

converges. However, a2n is the harmonic series, which is known to diverge.

Problem 2

For each n, set

a+n =
|an|+ an

2

a−n =
|an| − an

2

Then an = a+n − a−n for all n, and a+n , a
−
n ≥ 0.

Suppose that an has finitely many positive terms. Then a+n = 0 for all but
finitely many n, so the series {a+n } converges. It follows that a−n = a+n − an
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converges, hence so does |an| = a+n + a−n , a contradiction to conditional
convergence.

Suppose that an has finitely many negative terms. Then a−n = 0 for all but
finitely many n, so the series {a−n } converges. It follows that a+n = an − a−n
converges, hence so does |an| = a+n + a−n , a contradiction to conditional
convergence.

In either case, we see that if an converges conditionally (i.e., |an| does
not converge), then an either has infinitely many positive or infinitely many
negative terms.

Problem 3

(b). Setting an =
n2

2n
, we have∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣(n+ 1)2/2n+1

n2/2n

∣∣∣∣
=

1

2

(
n+ 1

n

)2

Thus

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1

2

(
n+ 1

n

)2

=
1

2
< 1.

So by the ratio test, this series converges.

(d). Setting an =
(n!)2

(2n)!
, we have∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣(n+ 1)!2/(2n+ 2)!

(n!)2/(2n)!

∣∣∣∣
=

(n+ 1)!2/(n!)2

(2n+ 2)!/(2n)!

=
(n+ 1)2

(2n+ 2)(2n+ 1)

=
n2 + 2n+ 1

4n2 + 6n+ 2

=
1 + 2/n+ 1/n2

4 + 6/n+ 2/n2
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Thus

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1 + 2/n+ 1/n2

4 + 6/n+ 2/n2
=

1

4
< 1.

So by the ratio test, this series converges.

(j). By the integral test, we may compare this with

∫ ∞
2

dx

x(lnx)p
.

For = p 6= 1, the corresponding indefinite integral is
(lnx)1−p

1− p
. We thus

have ∫ ∞
2

dx

x(lnx)p
=

[
(lnx)1−p

1− p

]∞
2

As lim
x→∞

lnx =∞, this converges only when p > 1.

Finally, if p = 1, the corresponding indefinite integral is ln lnx. We thus
have ∫ ∞

2

dx

x lnx
= [ln lnx]∞2

As lim
x→∞

lnx =∞, we also have lim
x→∞

ln lnx =∞, so the integral diverges.

In summary, we have convergence only when p > 1.

Problem 4

Let’s suppose that the limit lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists. Then if we apply the ratio

test to
∑

anx
n, we are considering the limit

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = |x| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
This is less than one iff

|x| <
(

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣)−1 ,
so

R =

(
lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣)−1 = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ .
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(a). Setting an =
1

2n
√
n

, we have∣∣∣∣ anan+1

∣∣∣∣ =

∣∣∣∣ 1/(2n
√
n)

1/(2n+1
√
n+ 1)

∣∣∣∣
=

∣∣∣∣2n+1
√
n+ 1

2n
√
n

∣∣∣∣
= 2

√
1 +

1

n

Thus

lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ = lim
n→∞

2

√
1 +

1

n
= 2.

Therefore, the ratio of convergence is 2.

(f). The nth root of the nth term is
x

lnn
. For all x, we have lim

n→∞

x

lnn
= 0,

so by the nth root test, we see that the nth root of the nth term approaches
0. It follows that the series converges for all x, i.e., the radius of convergence
is ∞.

Problem 5

Let f(x) =
x

1 + x
. We have f(1) =

1

2
, so we need to show that lim

x→1
f(x) =

1

2
.

Given ε > 0, let δ = min(1, ε).

Then if |x− 1| < δ, we have∣∣∣∣f(x)− 1

2

∣∣∣∣ =

∣∣∣∣ x

1 + x
− 1

2

∣∣∣∣
=

∣∣∣∣ 2x

2 + 2x
− 1 + x

2 + 2x

∣∣∣∣
=

∣∣∣∣ x− 1

2 + 2x

∣∣∣∣
=

|x− 1|
|2 + 2x|
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As |x− 1| < δ ≤ 1, we have x > 0, so |2 + 2x| > 2, so∣∣∣∣f(x)− 1

2

∣∣∣∣ =
|x− 1|
|2 + 2x|

≤ |x− 1| < δ ≤ ε.

As ε > 0 was arbitrary, we are done.

Problem 6

We have sin2 x = 1− cos2 x = (1− cosx)(1 + cosx), so

1− cosx =
sin2 x

1 + cosx
,

unless cosx = −1. But cos 0 = 1, so cosx 6= −1 for x in a neighborhood of
0.

We therefore have

lim
x→0

1− cosx

x
= lim

x→0

sin2 x

x(1 + cosx)

=

(
lim
x→0

sinx

x

)(
lim
x→0

sinx

1 + cosx

)
= (1)

(
0

1 + 1

)
= 0.

Problem 7

As the function contains
√
x, we are only considering x ≥ 0. This will be

assumed implicitly in all that follows.

For all x 6= 0, we have | cos(1/x)| ≤ 1. It follows that for x 6= 0, we
have |f(x)| =

√
x| cos 1/x| ≤

√
x. Thus 0 ≤ |f(x)| ≤

√
x, so by the squeeze

theorem for limits, 0 ≤ lim
x→0
|f(x)| ≤ lim

x→0

√
x = 0. It follows that lim

x→0
|f(x)| =

0, hence also lim
x→0

f(x) = 0 = f(0), so f is continuous at 0.

Problem 8

(a). Suppose there were x0 such that f(x0) 6= 0. Let ε = |f(x0)|/2 > 0.
Then there is δ > 0 such that |f(x) − f(x0)| < ε for x ∈ (x0 − δ, x0 + δ).
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In particular, for such x, we have f(x) > |f(x0)|/2 > 0. But we can find a
rational number r in (x0 − δ, x0 + δ), so f(r) = 0, a contradiction.

(b). Again, suppose there were x0 such that f(x0) > g(x0). Let ε = |f(x0)−
g(x0)|/2 > 0. Then there is δ > 0 such that |f(x)− f(x0)| < ε and |g(x)−
g(x0)| < ε for x ∈ (x0 − δ, x0 + δ). In particular, for such x, we have

f(x) > f(x0) − ε =
f(x0) + g(x0)

2
, and g(x) < g(x) + ε =

f(x0) + g(x0)

2
.

But we can find a rational number r in (x0 − δ, x0 + δ), so f(r) ≤ g(r), a
contradiction.

As a counterexample, take f(x) = 0 and g(x) = (x−
√

2)2. Then f(x) <

g(x) for all rational x, but f(
√

2) = g(
√

2) = 0.

Problem 9

Let us take xn =
nπ

2
. Assume that lim

x→∞
sinx exists.

Applying Theorem 11.5A for a =∞ (if one were worried about the theo-
rem applying with a = ∞, one could also apply it to sin(1/x) with a = 0),
we find that since lim

n→∞
xn = ∞, the limit lim

n→∞
sinxn also exists. Call this

limit L.

Taking the subsequence x2n, we have

lim
n→∞

sinx2n = lim
n→∞

sin (2πn) = lim
n→∞

0 = 0,

so L = 0. Taking the subsequence x4n+1, we have

lim
n→∞

sinx4n+1 = lim
n→∞

sin
(

2πn+
π

2

)
= lim

n→∞
1 = 1,

so L = 1.

This is a contradiction, so lim
x→∞

sinx does not exist.

Problem 10

If f is multiplicatively periodic with constant c, we note that f(x) =
f(cc−1x) = f(c−1x), so f is multiplicatively periodic with constant c−1. If
c > 1, then c−1 < 1, so we may assume that f is multiplicatively periodic
for a constant less than one. In other words, without lack of generality, we
may assume c < 1.
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Applying the relation f(x) = f(cx) iteratively, we find that f(x) = f(cnx)
for any x.

Consider the sequence {cnx}. This sequence has limit 0 as n→∞. Thus
lim
n→∞

f(cnx) = f(0) by continuity of f . But f(cnx) = f(x), so this limit is

also lim
n→∞

f(cnx) = lim
n→∞

f(x) = f(x). Thus f(x) = f(0) for all x, so the

function is constant.
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